Imprimitivity Bimodules

Shen Lu

October 29, 2020

1 Motivation

Definition 1.1. Two rings R, S are *Morita equivalent* if the categories of left R-modules and left S-modules are equivalent.

In a series of seminal papers, Marc Rieffel developed a very useful notation of Morita equivalence for C*-algebras in the 70s.

2 Imprimitivity bimodules

Definition 2.1. Let A and B be C*-algebras. Then an A-Bimprimitivity bimodule (A-B-equivalence bimodule) is an <u>A-B-</u> bimodule such that primitive primodule (A-B-equivalence bimodule) is an <u>A-B-</u>(i) X is a full left Hilbert A-module, and a full right HilbertB-module; $= <math>A \cdot (x \cdot b)$ (ii) for all $x, y \in X$, $a \in A$, and $b \in B$, $(\lambda \alpha) \cdot (x \cdot b)$ = $A \cdot (x \cdot (\lambda b))$ (iii) for all $x, y, z \in X$, $\forall A$ acts on right Hilbert B-module X_B $(x, y)_A \cdot z = x \cdot (y, z)_B$. Definition 2.2. Two C*-algebras A and B are Morita equivalent if there is an A-B-imprimitivity bimodule ${}_{A}X_B$. For a fixed a $\in A$ $k \in A \cdot module$ $X_B \longrightarrow X_B$ $X = X \cdot (x \cdot b)$

> *Example* 2.5. Let A and B be isomorphic C*-algebra with *isomorphisms $\varphi : A \to B$. One can construct an A-B-imprimitivity bimodule ${}_{A}X_{B}$ with underlying space B by

 $x \cdot b = xb$, $a \cdot x = \varphi(a)x$, $\langle x, y \rangle_B = x^*y$, and $\langle x, y \rangle_A = \varphi^{-1}(xy^*)$.

Isomorphic \implies Morita equivalent.

 $M_n(A) - M_m(A) - M_m(A) - \bigoplus_{i=1}^n A \qquad impri. \ bimod$ Example 2.6. For any positive integer $n, \stackrel{i}{A}^{n}$ is an $M_n(A)$ -Aimprimitivity bimodule. For $u, v \in A^n$, $u \neq \langle u \rangle$

$$\langle u, v \rangle_A = \sum_{i=1}^n u_i^* v_i$$
 and $(\langle u, v \rangle_{M_n(A)})_{ij} = u_i v_j^*$.

Example 2.7. Let p be a projection in A (or M(A) when A is non-unital). Then \underline{Ap} is an \overline{ApA} -pAp-equivalence bimodule, with $\langle ap, bp \rangle_{pAp} = pa^*bp$ and $\langle ap, bp \rangle_{\overline{ApA}} = apb$.

3 Useful tools

Lemma 3.1. Let A and B be C*-algebras and suppose that X is an A-B-bimodule satisfying (i) and (iii) of Definition 2.1. Then X is an A-B-imprimitivity bimodule if and only if X satisfies (ii)' for all $a \in A$, $b \in B$, and $x \in X$,

A

Proposition 3.2. Every full Hilbert B-module X_B is a $\mathcal{K}(X)$ -B-imprimitivity bimodule with "rank-one perators"

 $\langle x, y \rangle_{\mathcal{K}(\mathsf{X})} := \Theta_{x,y}.$

Conversely, if X is an A-B-imprimitivity bimodule, then there is an isomorphism ϕ of A onto $\mathcal{K}(X)$ such that $\phi(\langle x, y \rangle_A) = \langle x, y \rangle_{\mathcal{K}(X)}$ for all $x, y \in X$.

Giver Alternation de la Sta Morita equivalence: Tala X15 = AC **Definition 3.3.** Let A and B be C*-algebras and $A_0 \subset A$ and $B_0 \subset B$ dense *-subalgebras. An A_0 - B_0 -pre-imprimitivity *bimodule* is a vector space X_0 which is an A_0 - B_0 -bimodule such

- ssing $\langle x, x \rangle_A = 0 \implies x = 0$ (i) X_0 is a left pre-inner product A_0 -module and a right preinner product B_0 -module.
- (ii) $_{A_0}\langle X_0, X_0 \rangle$ and $\langle X_0, X_0 \rangle_{A_0}$ span dense ideals of A and B,
- (iii) for all $a \in A_0$, $b \in B_0$, $x \in X_0$, $\langle a \cdot x, a \cdot x \rangle_{B_0} < ||a||^2 \langle x, x \rangle_{B_0$ $\langle a \cdot x, a \cdot x \rangle_{B_0} \le ||a||^2 \langle x, x \rangle_{B_0} \text{ and } \langle x \cdot b, x \cdot b \rangle_{A_0} \le ||b||^2 \langle x, x \rangle_{A_0}$

in the completions B and A, respectively.

(iv) for all $x, y, z \in X_0$,

$$\langle x, y \rangle_{A_0} \cdot z = x \cdot \langle y, z \rangle_{B_0}.$$

Lemma 3.4. Let A and B be C*-algebras and $A_0 \subset A$ and $B_0 \subset$ B dense *-subalgebras. If X_0 is an A_0 -B₀-pre-imprimitivity bimodule, then

$$||x||_{A}^{2} = ||\langle x, x \rangle_{A_{0}}|| = ||\langle x, x \rangle_{B_{0}}|| = ||x||_{B}^{2}$$

for all $x \in X$.

Punchline: An A_0 - B_0 -pre-imprimitivity bimodule X_0 can be completed to an A-B-imprimitivity bimodule X.

Induced representation of group C*-algebras 4

Recall: Suppose A acts as adjointable operators on a Hilbert B-module X_B . Given a nondegenerate representation $\pi: B \to B$ $\mathcal{B}(\mathcal{H}_{\pi})$, we can

- (i) form the interior tensor product of Hilbert C*-modules Hilbert space $\mathsf{X}\otimes_B\mathcal{H}_\pi$
- (ii) induce a representation $\operatorname{Ind} \pi$ of A on $X \otimes_B \mathcal{H}_{\pi}$ via

Ind
$$\pi(a)$$
 $(x \otimes_B h) := (a \cdot x) \otimes_B h$.

Let G be a unimodular locally compact group, and H a closed (unimodular) subgroup of G. Last time, we constructed a right Hilbert $C^*(H)$ -module $X_{C^*(H)}$ (by completing $X_0 = C_c(G)$), and we can induce representations of $C^*(H)$ to representations of $C^*(G)$ (equivalently, induce unitary representations of H to unitary representation of G).

Right $C^*(H)$ module structure: $X_0 = C_c(G)$ is a right preinner product $C_c(H)$ -module with

$$f \cdot b(s) = \int_{H} f\left(st^{-1}\right) b(t) dt$$

and

$$\langle f,g \rangle_{C_c(H)}(s) = \int_G \overline{f(r)}g(rs)dr,$$

for all $f, q \in C_c(G)$ and $b \in C_c(H)$.

 $\begin{array}{c} \swarrow & C^*(G) \text{ acts as adjointable operators: } z \in C_c(G) \text{ acts on} \\ f \in X_0 = C_c(G) \text{ by} \end{array}$

$$z \cdot f(s) = \int_G z(r) f\left(r^{-1}s\right) dr.$$

Extends this left action to a *-homomorphism of $C^*(G)$ into $\mathcal{L}(\mathsf{X}_{C^*(H)})$. However, the image of this *-homomorphism is not $\mathcal{K}(\mathsf{X}_{C^*(H)}).$

As it turns out, X is a $C_0(G/H) \rtimes G - C^*(H)$ -imprimitivity bimodule, where $C_0(G/H) \rtimes G$ is the crossed product C*-algebra. $C^{\star}(G) = \overline{C_{c}(G)}$ **Definition 4.1.** $E_0 = C_c(G \times G/H)$ is a *-algebra with

$$\phi * \psi \left(r, sH \right) = \int_{G} \phi(u, sH) \psi \left(u^{-1}r, u^{-1}sH \right) du, \quad \left\langle \right\rangle$$

and

$$\phi^*(r, sH) = \overline{\phi\left(r^{-1}, r^{-1}sH\right)}.$$

The crossed product C*-algebra $C_0(G/H) \rtimes G$ is the completion of E_0 with respect to the norm

 $\|\phi\| = \sup\{\|\pi \rtimes U(\phi)\| : (\pi, U) \text{ is a covariant representation of } (C_c(G/H), G)\}$ For any $\phi \in E_0$ and $f, g \in C_c(G)$, we define

$$\langle f,g\rangle\left(r,sH
ight) = \int_{H} f(st)\overline{g\left(r^{-1}st
ight)}dt$$

and

$$\phi \cdot f(s) = \int_{G} \phi(r, sH) f(r^{-1}s) dr.$$

Then $X_0 = C_c(G)$ is a left pre-inner product E_0 -module. Moreover, $\langle X_0, X_0 \rangle_{E_0}$ spans a dense ideal in E_0 with respect to the sup (universal) norm defined above.

By completing the E_0 - $C_c(H)$ -pre-imprimitivity bimodule, we arrive at a $C_0(G/H) \rtimes G$ - $C^*(H)$ -imprimitivity bimodule.

Reference

[RW] I. Raeburn and D. P. Williams, *Morita Equivalence and Continuous-Trace* C^* -Algebras, Mathematical Surveys and Monographs no. 60, American Mathematical Society, Providence RI, 1998.