Imprimitivity Bimodules
Shan Lu
October 29, 2020

1 Motivation
Definition 1.1. Two rings R, S are Morita equivalent if the categories of left R-modules and left S-modules are equivalent.

In a series of seminal papers, Marc Rieffel developed a very useful notation of Morita equivalence for C^{*}-algebras in the 70s.

2 Imprimitivity bimodules
Definition 2.1. Let A and B be C^{*}-algebras. Then an $A-B$ Actually imprimitivity bimodule (A - B-equivalence bimodule) is an $A-B$ -
$(i i) \Rightarrow \frac{\text { bimodule such that }}{\operatorname{span}\left\{\langle x, y\rangle_{A}: x, y \in x\right\}}$ dense in A
(i) X is a full left Hilbert A-module, and a full right Hilbert

$$
(a \cdot x) \cdot b
$$ B-module;

$=a \cdot(x \cdot b)$
(ii) for all $x, y \in \mathrm{X}, a \in A$, and $b \in B$,

$$
(\lambda a) \cdot(x \cdot b)
$$

$=\boldsymbol{a} \cdot(\boldsymbol{x} \cdot(\lambda b)) \frac{\langle a \cdot x, y\rangle_{B}=\left\langle x, a^{*} \cdot y\right\rangle_{B}}{(\text { iii })}$ and $\langle x \cdot b, y\rangle_{A}=\left\langle x, y \cdot b^{*}\right\rangle_{A} ;$
(iii) for all $x, y, z \in \mathrm{X}, \longrightarrow A$ acts on right Hilbert B-module X_{B}

$$
\langle x, y\rangle_{A} \cdot z=x \cdot\langle y, z\rangle_{B}
$$

as adjointable operators.

$$
\varphi: A \rightarrow \mathcal{L}\left(X_{B}\right)
$$

Definition 2.2. Two C^{*}-algebras A and B are Morita equivalent if there is an A - B-imprimitivity bimodule ${ }_{A} \mathrm{X}_{B}$. For a fix ed $a \in A$
left A-module

$$
\begin{aligned}
& X_{B} \longrightarrow X_{B} \\
& x \longrightarrow a \cdot x
\end{aligned}
$$

Example 2.3. A Hilbert space \mathcal{H} is a $\mathcal{K}(\mathcal{H})$ - \mathbb{C}-imprimitivity bimodule, with
rank-ove operators
Hilbert space $\langle h, k\rangle_{\mathbb{C}}:=\langle k, h\rangle$ and $\langle h, k\rangle_{\mathcal{K}(\mathcal{H})}:=h \otimes \bar{k}=\Theta_{h, k}: \mathcal{H} \xrightarrow[n]{ } \mathcal{H}$
is a Hilbert \mathbb{C}-module

$$
\langle h, k\rangle_{\mathbb{C}}=\langle k, h\rangle .
$$

fullness $k(P)$-module ronk-one operators \rightarrow one operators \rightarrow
fin it rank openton closing $\langle l, k\rangle h$
A is an A - A-equivalence bimod- 0 anat
Operator
Example 2.4. The C^{*}-algebra A is an A - A-equivalence bimod- impact operator.
ute, with

$$
{ }_{A}\langle a, b\rangle=a b^{*} \quad \text { and } \quad\langle a, b\rangle_{A}=a^{*} b .
$$

fullness: elements of the form $a^{*} b$ is dense in A.

Example 2.5. Let A and B be isomorphic C^{*}-algebra with $*-$ isomorphisms $\varphi: A \rightarrow B$. One can construct an $A-B$-imprimitivity bimodule ${ }_{A} \mathrm{X}_{B}$ with underlying space B by

$$
x \cdot b=x b, \quad a \cdot x=\varphi(a) x, \quad\langle x, y\rangle_{B}=x^{*} y, \quad \text { and } \quad\langle x, y\rangle_{A}=\varphi^{-1}\left(x y^{*}\right) .
$$

Isomorphic \Longrightarrow Morita equivalent.

$$
M_{n}(A)-M_{m}(A)-
$$

$$
\stackrel{n}{\oplus} A
$$ impri. bimod.

Example 2.6. For any positive integer n, $\stackrel{i}{A}^{n}$ is an $M_{n}(A)-A$ imprimitivity bimodule. For $u, v \in A^{n}, \quad u=\left\langle u_{1}, \ldots, u_{n}\right\rangle$

$$
\begin{aligned}
\langle u, v\rangle_{A}=\sum_{i=1}^{n} u_{i}^{*} v_{i} \text { and } \quad \begin{array}{c}
v=\left\langle v_{1}, \ldots, v_{n}\right\rangle \\
p A p=\{p a p \in A: a \in A\}, \\
A p A
\end{array} \overline{\operatorname{span}}\{a p b: a, b \in A\}
\end{aligned}
$$

Example 2.7. Let p be a projection in A (or $M(A)$ when A is non-unital). Then $A p$ is an $\overline{A p A}-p A p$-equivalence bimodule, with

$$
\langle a p, b p\rangle_{p A p}=p a^{*} b p \quad \text { and } \quad\langle a p, b p\rangle_{\overline{A p A}}=a p b .
$$

3 Useful tools
Lemma 3.1. Let A and B be C^{*}-algebras and suppose that X is an A-B-bimodule satisfying (i) and (iii) of Definition 2.1. Then X is an A-B-imprimitivity bimodule if and only if X satisfies (ii)' for all $a \in A, b \in B$, and $x \in \mathrm{X}$,
$\langle a \cdot x, a \cdot x\rangle_{B} \leq\|a\|^{2}\langle x, x\rangle_{B} \quad$ and $\quad\langle x \cdot b, x \cdot b\rangle_{A} \leq\|b\|^{2}\langle x, x\rangle_{A}$

$$
\left(\Rightarrow \frac{T \in f(x)}{\langle T(x), T(x)\rangle_{A} \leq\|T\|_{o p}\langle x, x\rangle_{A}}\right.
$$

(as elements of c^{*}-algs)
(\Leftarrow) Fullness condition +
Camely-Schwarz ineq.

Proposition 3.2. Every full Hilbert B-module X_{B} is a $\mathcal{K}(X)$ -B-imprimitivity bimodule with "rank-one operators"

$$
\langle x, y\rangle_{\mathcal{K}(\mathrm{X})}:=\Theta_{x, y} .
$$

Conversely, if X is an $A-B$-imprimitivity bimodule, then there is an isomorphism ϕ of A onto $\mathcal{K}(\mathrm{X})$ such that $\phi\left(\langle x, y\rangle_{A}\right)=$ $\langle x, y\rangle_{\mathcal{K}(\mathrm{X})}$ for all $x, y \in \mathrm{X}$.

Gives Alternative defy of Morita equivalence:

$$
\text { Tala } X_{B}=\mathcal{H}_{\mathbb{C}}
$$

Definition 3.3. Let A and B be C^{*}-algebras and $A_{0} \subset A$ and $B_{0} \subset B$ dense $*$-subalgebras. An A_{0} - B_{0}-pre-imprimitivity bimodule is a vector space X_{0} which is an $\overline{A_{0}-B_{0} \text {-bimodule such }}$
that missing $\langle x, x\rangle_{A}=0 \Rightarrow x=0$
(i) X_{0} is a left pre-inner product A_{0}-module and a right preinner product B_{0}-module.
(ii) ${ }_{A_{0}}\left\langle X_{0}, X_{0}\right\rangle$ and $\left\langle X_{0}, X_{0}\right\rangle_{A_{0}}$ span dense ideals of A and B, respectively.
(iii) for all $a \in A_{0}, b \in B_{0}, x \in \mathrm{X}_{0}$,

$$
\begin{aligned}
& \text { ense ideals of } A \text { and } B \\
& N=\left\{x \in X_{0}:\langle x, x\rangle_{0}=0\right\}
\end{aligned}
$$

$$
\langle a \cdot x, a \cdot x\rangle_{B_{0}} \leq\|a\|^{2}\langle x, x\rangle_{B_{0}} \quad \text { and } \quad\langle x \cdot b, x \cdot b\rangle_{A_{0}} \leq\|b\|^{2}\langle x, x\rangle_{A_{0}}
$$

in the completions B and A, respectively.
(iv) for all $x, y, z \in X_{0}$,

$$
\langle x, y\rangle_{A_{0}} \cdot z=x \cdot\langle y, z\rangle_{B_{0}} .
$$

Lemma 3.4. Let A and B be C^{*}-algebras and $A_{0} \subset A$ and $B_{0} \subset$ B dense $*$-subalgebras. If X_{0} is an A_{0} - B_{0}-pre-imprimitivity bimodule, then

$$
\|x\|_{A}^{2}=\left\|\langle x, x\rangle_{A_{0}}\right\|=\left\|\langle x, x\rangle_{B_{0}}\right\|=\|x\|_{B}^{2}
$$

for all $x \in \mathrm{X}$.
Punchline: An $A_{0}-B_{0}$-pre-imprimitivity bimodule X_{0} can be completed to an A - B-imprimitivity bimodule X .

4 Induced representation of group C^{*}-algebras

Recall: Suppose A acts as adjointable operators on a Hilbert B-module X_{B}. Given a nondegenerate representation $\pi: B \rightarrow$ $\mathcal{B}\left(\mathcal{H}_{\pi}\right)$, we can
(i) form the interior tensor product of Hilbert C^{*}-modules $X \otimes_{B} \mathcal{H}_{\pi}$
(ii) induce a representation Ind π of A on $\mathrm{X} \otimes_{B} \mathcal{H}_{\pi}$ via

$$
\operatorname{Ind} \pi(a)\left(x \otimes_{B} h\right):=(a \cdot x) \otimes_{B} h
$$

Let G be a unimodular locally compact group, and H a closed (unimodular) subgroup of G. Last time, we constructed a right Hilbert $C^{*}(H)$-module $\mathrm{X}_{C^{*}(H)}$ (by completing $\mathrm{X}_{0}=C_{c}(G)$), and we can induce representations of $C^{*}(H)$ to representations of $C^{*}(G)$ (equivalently, induce unitary representations of H to unitare representation of G).

Right $C^{*}(H)$ module structure: $\mathrm{X}_{0}=C_{c}(G)$ is a right pereinner product $C_{c}(H)$-module with

$$
f \cdot b(s)=\int_{H} f\left(s t^{-1}\right) b(t) d t
$$

and

$$
\langle f, g\rangle_{C_{c}(H)}(s)=\int_{G} \overline{f(r)} g(r s) d r
$$

for all $f, g \in C_{c}(G)$ and $b \in C_{c}(H)$.
$\nless C^{*}(G)$ acts as adjointable operators: $z \in C_{c}(G)$ acts on $f \in X_{0}=C_{c}(G)$ by

$$
z \cdot f(s)=\int_{G} z(r) f\left(r^{-1} s\right) d r
$$

Extends this left action to a $*$-homomorphism of $C^{*}(G)$ into $\mathcal{L}\left(\mathrm{X}_{C^{*}(H)}\right)$. However, the image of this $*$-homomorphism is not $\mathcal{K}\left(X_{C^{*}(H)}\right)$.

As it turns out, X is a $C_{0}(G / H) \rtimes G$ - $C^{*}(H)$-imprimitivity bimodule, where $C_{0}(G / H) \rtimes G$ is the crossed product C^{*}-algebra.

$$
\begin{aligned}
& \text { d product } C^{*} \text {-algebra. } \\
& C^{*}(G)=\text { universal }_{c}(G)
\end{aligned}
$$

Definition 4.1. $E_{0}=C_{c}(G \times G / H)$ is a $*$-algebra with

$$
\phi * \psi(r, s H)=\widehat{\int_{G} \phi(u, s H) \psi}\left(u^{-1} r, u^{-1} s H\right) d u
$$

and

$$
\phi^{*}(r, s H)=\overline{\phi\left(r^{-1}, r^{-1} s H\right)}
$$

The crossed product C*-algebra $C_{0}(G / H) \rtimes G$ is the completion of E_{0} with respect to the norm
$\|\phi\|=\sup \left\{\|\pi \rtimes U(\phi)\|:(\pi, U)\right.$ is a covariant representation of $\left.\left(C_{c}(G / H), G\right)\right\}$
For any $\phi \in E_{0}$ and $f, g \in C_{c}(G)$, we define

$$
\langle f, g\rangle(r, s H)=\int_{H} f(s t) \overline{g\left(r^{-1} s t\right)} d t
$$

and

$$
\phi \cdot f(s)=\int_{G} \phi(r, s H) f\left(r^{-1} s\right) d r .
$$

Then $\mathrm{X}_{0}=C_{c}(G)$ is a left pre-inner product E_{0}-module. Moreover, $\left\langle X_{0}, X_{0}\right\rangle_{E_{0}}$ spans a dense ideal in E_{0} with respect to the sup (universal) norm defined above.

By completing the $E_{0}-C_{c}(H)$-pre-imprimitivity bimodule, we arrive at a $C_{0}(G / H) \rtimes G$ - $C^{*}(H)$-imprimitivity bimodule.

Reference

[RW] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C^{*}-Algebras, Mathematical Surveys and Monographs no. 60, American Mathematical Society, Providence RI, 1998.

